
ln Documentation
Release 0.1

Stan Seibert

May 06, 2014

Contents

1 Contents 3
1.1 Server Installation and Setup . 3
1.2 Data Series . 4
1.3 Recording Data . 7
1.4 Querying Data . 9
1.5 REST API Reference . 14

2 Indices and tables 19

i

ii

ln Documentation, Release 0.1

Natural Log (ln for short) is a time series database with a REST API. The database records time-varying scalars, arrays,
and generic binary data at irregularly-spaced intervals, and supports time-oriented queries on that data. It is primarly
intended for logging numeric data, rather than string messages like syslog.

Warning: Natural Log is currently practicing “Documentation Driven Development,” so none of the code exists
to do any of this yet.

The key feature of Natural Log is its support for resampling queries. In such queries, the server takes the raw,
irregularly-spaced time series and returns a new time series with equally spaced intervals of (approximately) the
requested size. This can be used to reduce a time series sampled very finely to one sampled much more coarsely
without having to transfer a large amount of data to a plotting client. Moreover, two time series (t,x) and (t,y) can be
more easily joined to create an (x,y) series if the time series first can be resampled to the same points in time.

Different resampling strategies are required for different applications, so Natural Log allows both the reduction (used
to combine raw points) and interpolation (used between reduced points) strategies to be selected as part of the query.
See Reduction Strategies and Interpolation Strategies for more information.

Contents 1

ln Documentation, Release 0.1

2 Contents

CHAPTER 1

Contents

1.1 Server Installation and Setup

The fastest way to install Natural Log and its dependencies is with virtualenv/pip:

virtualenv ln_env
source ln_env/bin/activate
cd ln_env
pip install ln

The included REST server is built with the Flask microframework.

1.1.1 Configuring the Server

Once Natural Log is installed, you need to create a server configuration file, which uses the JSON format. Here is an
example ln_local.json config file for a local test server we will use elsewhere in the documentation:

{
"host" : "127.0.0.1",
"port" : 6283,
"url_base" : "http://localhost:6823/",

"resampling_intervals" : [1, 60, 3600, 86400],

"storage" : {
"backend" : "memory"

}
}

The required fields in the server configuration are:

Field Name JSON Type Description
host String IP address to which to bind
port Number Port number to which to listen
url_base String Base URL for this server. Used to construct URLs for responses.
resampling_intervalsList of

numbers
The server will resample data with these intervals (in seconds).

storage Object An object describing the storage backend to use. See Storage Backends
for more details.

3

http://flask.pocoo.org/

ln Documentation, Release 0.1

1.1.2 Storage Backends

Natural Log supports multiple storage backends as a way to experiment with different ways to store time series data.
Each backend and its configuration parameters are described below.

In-memory Backend

This backend stores all data in memory, so memory usage will grow without bound and all data is lost when the
server is shutdown. The in-memory backend is intended for testing and development purposes only. Do not ever use
this backend on a production deployment! The storage configuration fields are:

Field Name JSON Type Description
backend String Set to memory

SQLite

This backend stores the data in an SQLite file. Data is saved to disk and SQLite’s ACID guarantees make this a
production-worthy option. It is not particularly fast.

Field Name JSON Type Description
backend String Set to sqlite
filename String Name of sqlite file on disk.

1.1.3 Starting the Server

Before starting the Natural Log server, we first need to initialize the storage backend:

$ ln-server -c ln_local.json init
Natural Log 0.1
Initializing "memory" storage backend...
Done.

Then we can start the server:

$ ln-server -c ln_local.json start
Natural Log 0.1
Opening "memory" storage backend...
Listening on 127.0.0.1:6283
Base URL is http://localhost:6283/

1.2 Data Series

A data series is a typed quantity that changes over time. Each data series has a name, a data type, a default reduction
strategy, and a default interpolation strategy. Most data series are scalar types, such as integers and floating point
values, but can also be array types or binary blobs. Data series may also optionally have a unit, a description, or
application-specific metadata.

4 Chapter 1. Contents

ln Documentation, Release 0.1

1.2.1 Data Series Attributes

Series Names

The name of a series can be any sequence of alphanumeric characters, underscores, and periods. We suggest the
convention of organizing data series hierarchically with levels separated by periods. For example, one could organize
a set of temperature sensors this way:

servers.node01.cpu_temp
servers.node01.disk_temp
servers.node02.cpu_temp
servers.node02.disk_temp

Data Types

The type of a data series is used to determine the storage format for data in memory and on disk. To save space, use a
type appropriate to the range and precision of the data series.

Scalar Types

Data series with scalar types record a single number per update. The valid scalar types are:

int8
int16
int32
int64
float32
float64

Note that the number at the end of the type refers to its length in bits.

Array Types

An array type is an n-dimensional array of values with identical scalar type. Array types are a more compact way to
record values that are typically accessed as a group, such as a list of numbered channels or a histogram. Array types
are specified with a scalar type followed by a shape specification in brackets. The shape specification gives the size of
each dimension separated by commas. Examples:

int16[100]
float32[2,4]
int32[10,10,2]

Note: Individual array elements cannot be recorded or queried separately. If you frequently need to access array
elements one at a time, consider splitting the elements into separately named data series.

Blob Types

A generic binary “blob” type is provided for variable length binary data which cannot be reasonably represented as a
scalar or an array. Blob data have very limited reduction and interpolation options, so scalar and array types should
be used when practical. Individual blob values for a data series will be given unique server URLs. A blob type
specification includes a MIME type which is returned to the HTTP client when the blob is retrieved. Examples:

1.2. Data Series 5

ln Documentation, Release 0.1

blob:image/png
blob:application/pdf
blob:binary/octet-stream

Default Resampling Strategies

The handling of data points when resampling the time series in a query is controlled by a reduction and an interpolation
strategy. The reduction strategy specifies how to combine multiple points when they fall into a time interval, and the
interpolation strategy specifies how to use adjacent intervals to set the value of a time interval when it contains no
points. These methods are described further in Reduction Strategies and Interpolation Strategies.

Although any strategy can be selected in the query (except in the case of blob types), many data series naturally fit only
one pair of resampling strategies. For this reason, when creating a data series, a default reduction and interpolation
strategy must be selected.

Series Description, Unit and Metadata

The description of a data series is an optional free-form text field that can be displayed in user-facing interfaces to
Natural Log. The unit describes the physical unit (kg, m, deg F, etc) of the values recorded for the data series. The
unit is not used for calculation purposes, but may also be shown to users in interfaces to Natural Log data.

The metadata field is another free-form text field that can be used for specific applications. Unlike the description
field, the metadata field should not be shown directly to users. As an example, an array series that holds the bins of a
histogram can use the metadata field to store the bin boundaries of the histogram for use by display applications.

1.2.2 Creating a Data Series

We assume that you have the Natural Log server running as described in Configuring the Server. The examples below
use the Requests module for Python to make the REST API calls:

import requests
url_base = ’http://localhost:6283/’

To create a data series, we make a dictionary of the desired attributes and send it to the create URL. Here is an example
of creating a temperature data series:

t = {
’name’ : ’node01.cpu_temp’,
’type’ : ’float32’,
’reduction’ : ’mean’,
’interpolation’ : ’linear’,
’description’ : ’Temperature of CPU in node01’,
’unit’ : ’deg F’

}

r = requests.post(url_base + ’create/’, data=t)
assert r.status_code == 200 # Check for success

An integer commit counter:

t = {
’name’ : ’commits’,
’type’ : ’int8’,
’reduction’ : ’sum’,
’interpolation’ : ’middle’,

6 Chapter 1. Contents

http://docs.python-requests.org/

ln Documentation, Release 0.1

’description’ : ’Number of commits to repository’,
}

r = requests.post(url_base + ’create/’, data=t)
assert r.status_code == 200 # Check for success

An array data series:

t = {
’name’ : ’channel_crc_errors’,
’type’ : ’int32[100]’,
’reduction’ : ’sum’,
’interpolation’ : ’previous’,
’description’ : ’Number of CRC errors for each data channel.’,

}

r = requests.post(url_base + ’create/’, data=t)
assert r.status_code == 200 # Check for success

And finally, a blob data series:

t = {
’name’ : ’cameras.entrance’,
’type’ : ’blob:image/jpeg’,
’reduction’ : ’middle’,
’interpolation’ : ’none’,
’description’ : ’Webcam aimed at lab entrance’

}

r = requests.post(url_base + ’create/’, data=t)
assert r.status_code == 200 # Check for success

1.3 Recording Data

Natural Log is designed as an append-only database. The values for a given data source must be recorded in chrono-
logical order, and cannot be modified later. We may relax these restrictions eventually, but for now inserting, removing
or modify points requires replaying points from one data source into another one.

The examples in this section assume the Natural Log server is running with the configuration described in Configuring
the Server and the the data sources described in create-source. We continue to use the Requests module:

import requests
url_base = ’http://localhost:6283/’

1.3.1 Server-side Timestamping

Recording data is done by POST requests to the data/[source name]/ URL. If no time is given, then the time of
the request is used as the time of the data point. This avoids the need to worry about time synchronization on data
collection clients.

Here is an example that populate the temperature data source with some random values by pausing between each point:

import time, random
post_url = url_base + ’data/node01.cpu_temp/’
for i in xrange(10):

1.3. Recording Data 7

http://docs.python-requests.org/

ln Documentation, Release 0.1

v = { ’value’ : str(random.uniform(80, 120)) }
r = requests.post(post_url, data=v)
assert r.status_code == requests.codes.ok # Check for errors

1.3.2 Client-side Timestamping

A timestamp can also be provided with the data point. The restriction is that each data source is append-only, so data
must always be sent to the database in chronological order.

To avoid ambiguity, the interface of Natural Log describes times in ISO 8601 format, and times are always in UTC.
Here is an example:

post_url = url_base + ’data/commits/’
for i in xrange(1, 15):

v = {
’time’ : ’2013-07-%02d 12:00:31.503’ % i,
’value’ : ’1’

}
r = requests.post(post_url, data=v)
assert r.status_code == requests.codes.ok # Check for errors

1.3.3 Array Data Sources

Sources with array data types are updated in the same way, just with value set to a JSON string representation of a list.
Here is an example with the CRC error data source:

import json
post_url = url_base + ’data/channel_crc_errors/’
channel_data = [1 for i in xrange(100)]
v = { ’value’ : json.dumps(channel_data) }
r = requests.post(post_url, data=v)
assert r.status_code == requests.codes.ok # Check for errors

Multi-dimensional arrays can be represented with nested lists of lists.

1.3.4 Blob Data Sources

Blob data sources are handled slightly differently in order to transmit binary data. We have to use a multipart form
encoding to hold the value field. In Requests, this is very straightforward:

First fetch Google’s Euler doodle image
r = requests.get(’http://lh5.ggpht.com/Npa8E2JNHZHzrfQCutzmqqxD3WyQiiLibcaAvR4rR0hEs7LJDY-ahWf5SRBN5Jj7oDhRiZKk7Ca_rCn4rEAEFt_HC3Ho2OImBYDZKPg’)
assert r.status_code == requests.codes.ok
image = r.content

Next, upload
post_url = url_base + ’data/cameras.entrance/’
import datetime
t = { ’time’ : datetime.utcnow().isoformat(’ ’) }
v = { ’value’ : image }
r = requests.post(post_url, data=t, files=v)
assert r.status_code = requests.codes.ok

8 Chapter 1. Contents

ln Documentation, Release 0.1

1.4 Querying Data

The query interface is the key distinguishing feature of Natural Log. All queries return a resampled, uniformly spaced
time series based upon the irregularly spaced raw points recorded in the database. Raw points can also be retrieved
directly from the database, but that is not the primary usage model.

The basic components of a query are:

• List of data series names

• Optional resampling strategies for each data series. (If no resampling strategies are given, the default for the
data series is used.)

• Desired time of first point

• Desired time of last point

• Desired number of points (must be >= 2)

The result of the query is a 1D array of sample times and a 2D array with the resampled value of each data series
(column) at each sample time (row). To enable storage backends to return results quickly, the actual start and end
times, as well as the number of points, returned from the query may be slightly different than the requested values.
How close the query result will match the request depends on the storage backend configuration.

1.4.1 How Resampling Works

Let’s suppose we have a time-ordered series of raw data points (floats, in this case) called X:

A query comes in asking for 4 data points from t=20 to t=50 seconds. First, the storage backend decides if it needs to
adjust this request for performance reasons. Assuming it makes no changes to the request, it will need to decide the
value of the data series at t=20, 30, 40, and 50 seconds, indicated by the red lines:

1.4. Querying Data 9

ln Documentation, Release 0.1

To estimate the value of the data series at the given times, the query engine groups the raw data points into equally-
spaced bins around each of the evaluation times:

In this example, there are some bins with multiple raw points, and some bins with no points.

10 Chapter 1. Contents

ln Documentation, Release 0.1

Warning: To ensure that raw data points can only appear in one bin, bin intervals are defined to be half open.
If a raw point equals the value of the lower bin boundary, it is included in the bin, but if it equals the upper bin
boundary, is is not included in the bin.

Natural Log uses the following rules to decide the value of each evaluation point:

1. If the bin contains 1 raw point, that value in the bin is the value of that raw point.

2. If the bin contains multiple raw points, the reduction strategy is used to combine the raw points into a single
value.

3. If the bin contains 0 raw points, the interpolation strategy is used to generate a value from adjacent bins.

In the above example, suppose the reduction strategy is mean and the interpolation strategy is linear, the result of
the query will be:

t x
20 2.0
30 3.0
40 4.0
50 1.0

Reduction Strategies

A reduction strategy determines how raw values from a data series should be combined when they fall into the same
interval during resampling.

closest

Select the point closest to the center of the time interval. This is the only allowed option for blob data.

sum

Add up the values of all points in the time interval.

mean

Add the values of all points in the time interval and divide by the number of points. Note that each point is weighted
equally, regardless of the spacing of points in the time interval.

min

Report the minimum value in the interval.

max

Report the maximum value in the interval.

1.4. Querying Data 11

ln Documentation, Release 0.1

Interpolation Strategies

An interpolation strategy determines the value of the data series during resampling when no point falls into the interval.

none

Return a JSON null for entries where no data point is present. This is the only option allowed for blob data.

zero

Return zero (or an array of zeros) for entries where no data point is present. This option is not allowed for blob data.

previous

Return the value of the previous non-empty time interval. Note that if there is no such interval (due to no data points
within the query range), then null is returned.

linear

Returns a linear interpolation between the non-empty time intervals preceeding and following this time interval. If
non-empty time intervals cannot be found before and after this time interval, null is returned.

1.4.2 Making a Query

The examples in this section assume the Natural Log server is running with the configuration described in Configuring
the Server. We continue to use the Requests module:

import requests
url_base = ’http://localhost:6283/’

For this example, let’s make two new data series, temperature and humidity:

t = {
’name’ : ’temperature’,
’type’ : ’float32’,
’reduction’ : ’mean’,
’interpolation’ : ’linear’,
’description’ : ’Outside Temperature’,
’unit’ : ’deg C’

}

r = requests.post(url_base + ’create/’, data=t)
assert r.status_code == 200 # Check for success

t = {
’name’ : ’humidity’,
’type’ : ’float32’,
’reduction’ : ’mean’,
’interpolation’ : ’linear’,
’description’ : ’Relative humidity’,
’unit’ : ’%’

}

12 Chapter 1. Contents

http://docs.python-requests.org/

ln Documentation, Release 0.1

r = requests.post(url_base + ’create/’, data=t)
assert r.status_code == 200 # Check for success

And let’s fill them with some hourly data:

post_url = url_base + ’data/temperature/’
for i in xrange(1, 15):

v = {
’time’ : ’2013-07-24 %02d:00:00’ % i,
’value’ : 25.0 + 0.5 * i

}
r = requests.post(post_url, data=v)
assert r.status_code == requests.codes.ok # Check for errors

post_url = url_base + ’data/humidity/’
for i in xrange(1, 15):

v = {
’time’ : ’2013-07-24 %02d:00:00’ % i,
’value’ : 55.0 - 0.2 * i

}
r = requests.post(post_url, data=v)
assert r.status_code == requests.codes.ok # Check for errors

Now we can create a query for the database that resamples to 4 points and send it:

q = {
’selectors’ : [’temperature’, ’humidity’],
’first’ : ’2013-07-24 01:00:00’
’last’ : ’2013-07-24 15:00:00’
’npoints’ : 4,

}

r = requests.post(post_url, data=t)
assert r.status_code == requests.codes.ok # Check for errors
result = r.json()

Depending on the particular backend settings, the contents of result could be something like:

{
’times’ : [’2013-07-24 01:00:00’,

’2013-07-24 05:00:00’,
’2013-07-24 09:00:00’,
’2013-07-24 14:00:00’],

’values’ : [
[25.75, 54.7],
[27.25, 54.1],
[29.25, 53.3],
[31.25, 52.5]
]

}

If a series is an array type, the entries in the values array will be lists (possibly nested, if the array has multiple
dimensions), and if the series is a blob type, the value will be a string containing a URL to retrieve the appropriate
blob from the Natural Log server.

The default strategies for the series (mean and linear) were used in the above query, but we can also decide to
override them in the selector using the forms name:reduction (leaving the interpolation strategy to be the default)
or name:reduction:interpolation (overriding both strategies).

1.4. Querying Data 13

ln Documentation, Release 0.1

For example, this query:

q = {
’selectors’ : [’temperature:closest’, ’humidity:min’],
’first’ : ’2013-07-24 01:00:00’
’last’ : ’2013-07-24 15:00:00’
’npoints’ : 4,

}

r = requests.post(post_url, data=t)
assert r.status_code == requests.codes.ok # Check for errors
result = r.json()

returns the following result:

{
’times’ : [’2013-07-24 01:00:00’,

’2013-07-24 05:00:00’,
’2013-07-24 09:00:00’,
’2013-07-24 14:00:00’],

’values’ : [
[25.5, 54.6],
[27.5, 53.8],
[29.5, 53.0],
[31.5, 52.2]
]

}

1.4.3 Continuous Queries

Rather than polling for new data, you can subscribe to changes and receive updates pushed from the server via server-
sent events (SSE). In this case, the results are sent as a series of (time, value) pairs rather than a list of times and a list
of values. This mode is selected by leaving the parameter last out of the query.

1.5 REST API Reference

1.5.1 GET /

Get a list of data series.

URL Options

None

Response

Format: JSON

Field name Type Description
names List of strings Names of all data series known to this server

14 Chapter 1. Contents

ln Documentation, Release 0.1

1.5.2 POST /create

Create a new data series.

Request

Format: Form encoded

Field name Type Description
name String Name of this data series. Example: servers.node01.cpu_temp
type String Type of this data series. See Data Types for more information.
reduction String Name of reduction strategy. See Reduction Strategies for more information.
interpolationString Name of interpolation strategy. See Interpolation Strategies for more information.
unit String Unit of measure. May be empty string.
description String Description of data series. May be empty string.
metadata String Application-specific metadata about this series. Unlike description, this is not

intended to be shown to users.

1.5.3 GET /data/[series name]

Get the original values recorded for this data series, without resampling.

URL Options

Parameter Name Description
offset Index number of data point to start with.
limit Maximum number of points to return. Server may impose a smaller maximum.

If offset and limit are not set in the URL, then by default the server will return the last recorded value for the
data series.

Response (200)

Format: JSON

Field
name

Type Description

times List of
strings

List of ISO 8601 timestamps for all values.

values List of ?? List of recorded values for this data series.
resume Number

(optional)
If maximum # of returned values reached, this is the value to pass to the offset
parameter on the next GET call to continue.

Response: Failure (404)

Series does not exist.

1.5.4 GET /data/[series name]/[index]

Get a single raw value from a series. This is primarily used to fetch the contents of a blob with the mimetype set in the
response.

1.5. REST API Reference 15

ln Documentation, Release 0.1

URL Options

None.

Response (200)

Format: Raw binary w/ mimetype

Response: Failure (404)

Series or index number does not exist.

1.5.5 POST /data/[series name]

Record a new value for this data series.

Request

Format: Form encoded or multipart form encoded

Field
name

Type Description

time String
(optional)

ISO 8601 timestamp for value. If omitted, the server will use the time of the POST as
the time of the value.

value Various JSON-encoded new value, either as a number for scalar data series, or a list of numbers
(or a list of lists of numbers, etc) for array types.

If this data series is a blob type, the request should be multipart-encoded with value attached as a file. The MIME
type of the encoded file in the POST request will be ignore in favore of the MIME type that was specified when the
data series was created.

Response: Success (200)

Format: JSON

Success.

Field name Type Description
index Number ID number of newly recorded data point. Can be used as an offset to retrieve it

later.
url String

(optional)
If a blob data series, the URL for the newly recorded binary data.

Response: Failure (404)

Series does not exist.

16 Chapter 1. Contents

ln Documentation, Release 0.1

Response: Failure (400)

Format: JSON

Failure can occur if: * The timestamp for the data point is actually before the last recorded data point (time_order).
* The POSTed value does not match the data type of the series or has the wrong dimensions for array types.

Field name Type Description
type String Type of failure: “time_order”, “bad_type”
msg String A short explanation of the error.

1.5.6 GET /data/[series name]/config

Get the configuration information for this data series.

Response (200)

Format: JSON

Field name Type Description
name String Name of this data series. Example: servers.node01.cpu_temp
type String Type of this data series. See Data Types for more information.
reduction String Name of reduction strategy. See Reduction Strategies for more information.
interpolation String Name of interpolation strategy. See Interpolation Strategies for more information.
unit String Unit of measure. May be empty string.
description String Description of data series. May be empty string.

1.5.7 POST /data/[series name]/config

Modify the configuration information for this data series. Only the unit and description of the series can be changed
this way.

Request

Format: Form encoded

Field name Type Description
unit String Unit of measure. May be empty string.
description String Description of data series. May be empty string.
metadata String Description of data series. May be empty string.

Response: Success (200)

Format: JSON

Success.

Field name Type Description
result String Contains ok on success.

Response: Failure (404)

Series does not exist.

1.5. REST API Reference 17

ln Documentation, Release 0.1

Response: Failure (400)

Format: JSON

Failure can only happen if the form arguments have incorrect type.

Field name Type Description
result String Contains fail on failure.
msg String A short explanation of the error.

1.5.8 GET /query

Resample the selected data series and return the result. The query engine may return results with slightly different first
and last times, as well as a different number of points. If last is omitted, the request is interpreted as a continuous
query and the requested results and any future results are pushed via a persistent server-sent events (SSE) connection.

Field
name

Type Description

selectorsList of
strings

Names of data series to query, with optional overide of reduction and interpolation
strategy. See Making a Query for more details.

first String ISO 8601 timestamp of desired first resampling point.
last String

(Optional)
ISO 8601 timestamp of desired last resampling point.

npoints Number Desired number of data points (including first and last point)

Response: Success (200)

Format: JSON

Success.

Field name Type Description
times List of strings ISO 8601 timestamps of each resampled point.
values List of lists List of resampled points. See Making a Query for more details.

Response (continuous query): Success (200)

Format: text/event-stream containing JSON-encoded data

Success.

The data section of each SSE message contains the following in JSON:

Field name Type Description
time String ISO 8601 timestamps of resampled point.
value List List of resampled points. See Making a Query for more details.

Response: Failure (400)

Format: JSON

Failure can happen if the selectors are incorrect, first is not before last, or npoints is less than 2.

Field name Type Description
msg String A short explanation of the error.

18 Chapter 1. Contents

CHAPTER 2

Indices and tables

• genindex

• modindex

• search

19

	Contents
	Server Installation and Setup
	Data Series
	Recording Data
	Querying Data
	REST API Reference

	Indices and tables

